7. Let P (a sec θ , $b \tan \theta$) and Q (a sec ϕ , $b \tan \phi$), where

$$\theta + \phi = \pi / 2$$
, be two points on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

If (h, k) is the point of intersection of the normals at P and Q, then k is equal to (1999 - 2 Marks)

(a)
$$\frac{a^2 + b^2}{a}$$
 (b) $-\left(\frac{a^2 + b^2}{a}\right)$

(c)
$$\frac{a^2+b^2}{b}$$
 (d)
$$-\left(\frac{a^2+b^2}{b}\right)$$

Solution: -

7. (d) KEYCONCEPT:

Equation of the normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $(a \sec \alpha, b \tan \alpha)$ is given by $ax \cos \alpha + by \cot \alpha = a^2 + b^2$

Normals at
$$\theta$$
, ϕ are
$$\begin{cases} ax \cos \theta + by \cot \theta = a^2 + b^2 \\ ax \cos \theta + by \cot \phi = a^2 + b^2 \end{cases}$$

where $\phi = \frac{\pi}{2} - \theta$ and these pass through (h, k)

$$\therefore ah \cos \theta + bk \cot \theta = a^2 + b^2$$

$$ah \sin \theta + bk \tan \theta = a^2 + b^2$$

Eliminating
$$h$$
, bk (cot θ sin θ – tan cos θ)
= $(a^2 + b^2)$ (sin θ – cos θ) or $k = -(a^2 + b^2)/b$